Tank Attach Nutplates, Left Upper Spar Flange

October 23, 2010

Prev | Next

After getting a ton of housework done, I managed a quick half hour in the garage to finish up the nutplates on the left spar.

I took some pictures, but they are just like the ones from the previous post, so I’ll be short with the descriptions.

 

Countersinking.

 

I found it a little quicker (and less tiring on the drilling arm) to do 4 at a time. I’d countersink four sets of holes for the nutplate attach rivets, then cleco one side of a K1100-08 nutplate in, squeeze the rivet, and then take out the cleco and rivet the other side in. Then move on to the next four.

I’m sure it didn’t actually save me any time, but for some reason it seemed quicker.

 

Just squeezed the first four rivets on this flange.

 

 

Nice looking shop heads, if I do say so myself.

 

 

Another angle, I guess?

 

 

Remove the cleco.

 

 

Put in the other rivet (man, I was really camera happy today...)

 

Everything was going great until the VERY LAST RIVET.

[sigh]

 

For some reason I lifted up the squeezer as I set the rivet.

 

 

Another angle (except it's the same angle). Sorry.

 

After successfully drilling the rivet out. I was left with a crooked nutplate. Hmm.

 

Problem solving time!

 

I didn’t have a clamp small enough to hold the nutplate in place while I reset the rivet, so I grabbed one of the #8 screws (forgot the part number, sorry), and screwed it in gently.

 

Wuhoo! I think this is going to work!

 

asdf

 

(Screwed in gently) because I hadn't countersunk yet. This worked great.

 

 

See, I told you it worked great.

 

Last, but not least, I squeezed the AN426AD3-6 rivets for the K1000-4 nutplates near the spar root.

 

Flush side...

 

 

Nutplate side.

 

64 Rivets, ONE drilled out  in 0.5 hours.

Oh, and then I went for a run with the pups. (And by run, I mean rollerblade.)

Prev | Next

Advertisements

Prepped Right Wing Main Ribs, Clecoed Skeleton

September 18, 2010

Prev | Next

I’ve been at a little bit of dilemmna the last few days trying to figure out what direction to take with the project.

I still have the left rear spar to work on (until the left main spar shows up from Van’s…shipped yesterday…should be here Wednesday), or, I could move ahead with some rib prep on the right wing.

For the sake of  seeing something cool at the end of the day, I think I’ll move ahead with the right wing, and hopefully I’ll be able to get it onto a wing stand (yet to be designed) by the time I can get the left spar caught up to this point.

With rib prep, I’ve decided not to follow the suggestion to do all the ribs at once. I’m going to do them a few at a time to save my sanity.

First thing, let’s find some ribs.

I've pointed out to you before that I am at a little bit of a disadvantage building the right wing first, from the plans that only show the left wing.

Notice here that of the three different kinds of main wing ribs, there are both left and right versions in each of the wings. From what I can tell, the flanges face left or right based on what will be easiest/accessible to rivet.

So here are some main ribs (I count 11 in the picture, there are really 14 main ribs in each wing).

My goal today was to get the ribs clecoed to the spars, so I’m only going to finish what I have to (out of efficiency, not laziness). This means I’m going to edge finish most of each rib, then move on to fluting and flange straightening.

The edge finishing (except the little crevices) only took about 30 minutes on the sanity-saving scotchbrite wheel.

The fluting and flange straightening took 2 more hours, though. Ugh.

I took all 14 right main ribs inside and watched the UNC-GT and the Vandy-Ole Miss games.

Here's a rib, halfway fluted.

After fluting (holes are straight), but before finishing up the flange-straightening (to 90° from the web).

After a little while, my hands were hurting from all the fluting, so I took a picture of what I have done so far.

Looks like 5 done, 9 to go.

My "to go" pile. {sigh}

And after another couple of hours, I had the main ribs edge-finished, fluted, and flange-straightened enough to cleco them to the spars.

I really didn’t think I’d get this far tonight. (I have to keep in mind there is still a lot more prep on the ribs before I can actually prime them and get them riveted to the spars.

Pretty. (Pretty big!)

And of course, here is the obligatory “down the lightening” holes shot.

Every other builder on the plant has taken this picture.

But that’s not all! I have variations on a theme.

It's Ginger!!!

And Jack!!! (I promise he is there, just hard to see.)

After sending the dogs back inside for their Saturday afternoon nap, I just stared at this thing for awhile.

It just looks so cool!

3.0 hours today.

Prev | Next


Primed and Started Riveting Right Rear Spar

September 12, 2010

Prev | Next

Well, after a $15 stop at Napa ($10 for primer, $5 for sensor-safe RTV), I got back to work on the rear spar.

I spent a lot of time just kind of staring at everything today. The instructions are careful to point out that at the inboard part of the spar (where the reinforcement fork is), you can’t reach the spar flange holes with dimple dies for later dimpling, so you should do it now.

With that in mind, I wanted to make sure I got everywhere that may need dimpling later, so I also dimpled above the two (middle and outboard) doublers. You can see in this picture (the middle doubler) where I decided it would be a good idea to dimple (drill, deburr, then dimple, of course) the flange holes. I did this for both the spar and the doubler plates, which also have flanges on them.

The middle spar area, shown after drilling, deburring, and dimpling the flange area.

Same thing here. Also, I dimpled the 4 outboard holes (instead of countersinking), per previously approved builders who have talked to Van's.

I got back to thinking about the tank dimple dies, and whether they were really helping with skin-to-structure attachments. The idea is the the tank dies (which are deeper to account for pro-seal while riveting the tanks), when used on the skeleton, allow the regular dimple in the skin to sit better once riveted.

I got out some scrap, dimpled the “skin” with regular dies, and dimpled the “skeleton” with one tank and one regular die.

You can see on the left, those are the regular dies. The ones on the right is a regular die sitting in a deeper tank dimple. The tank dimples didn’t help anything sit better, because they were both fine.

A little blurry, but the "skin" sat equally well for both set of dimples.

The tank (deeper) dimple is on the right. You can see I'm not having any "seating" issues on the left.

Anyway, I think I am going to go back to using the regular dies on everything. Enough about that, though, let’s prime!

The rear spar components, getting primed after some more edge finishing, washing, drying, and positioning in my wood floors boxes.

Also, I went back and masked off the spar where I had countersunk.

Some of the nutplate attach rivets are not as flush as I would like them to be. I may get a rivet shaver and shave some of these down and reprime. We'll see how the tank skin sits on them.

Back on the rear spar, I posted a couple pictures of my edge finishing procedure. First, use the Permagrit block to smooth out the tooling marks. This picture is the resulting burrs that need to be deburred.

The permagrit is great, but it does leave some pretty decent sharp edges.

Then I used my “v” deburring tool to knock off the 45°.

After this, I usually use a scotchbrite pad to smooth everything out.

After blowing the aluminum dust off with shop air and a good wipe-down with MEK, I took the spar outside so I could paint the grass with my overspray.

I think this is the second side. Only one bug landed on my spar. I left him there for now. (He may be my first passenger.)

After a few hours, I returned out to the garage (workshop/mancave) to do some riveting.

First step: Ignore Van’s suggestions to tape off all of the holes that don’t get riveted now. (I know the warning bells must be going off right now, but it all worked out fine. Just have to read the plans carefully.

I left clecos in all of the “do not rivet now” holes. 6 regular AN470AD4-4 rivets on the left, and some AN426AD4-4 (I think) rivets in the dimples on the right.

SEP 14 UPDATE: WHOA! Those 4 on the right can’t be set now, because the W-712 outboard rib will get riveted to these holes, too. Glad I didn’t get to happy with the rivet squeezer.

These 10 can be riveted now. (Sep 14, 2010 Update: Nope. Just the 6 on the left can be set now.)

Same exercise here. Only 5 rivets can be set now.

I didn't really mark anything here, because I didn't really start on riveting the fork on yet. Next post, I'll be very careful about what to rivet.

Then, I actually started riveting. I love my new Cleveland Main Squeeze. Squeezing these An470AD4- rivets is so easy now.

Here are the 5 shop heads from the middle of the rear spar.

The same 5 from the manufactured side.

Oh, and I did 6 more at the W-707F doubler plate, but forgot to take pictures. 11 total. Also, I was mixing this and house projects over the course of a few hours, so I’m going to estimate it was about 2.0 hours today.

Prev | Next


Finished Countersinking Right Spar Flanges

August 24, 2010

Prev | Next

Well, tonight wasn’t a long night in the shop, but it was a good night.

First of all, there was a package sitting on my doorstep when I got home from work. After the excitement for my new Cleveland Main Squeeze died down as I realized the package wasn’t from Cleveland Tools, it quickly came back when I realized it was the missing W-712-R ribs that I had been shorted (what a cruel world!) in my wing kit.

Who knew I could get so excited about wing ribs.

Drumroll please!

{Triumphant music}

Okay, Andrew. Time to settle down.

Let’s finish up this right spar flange countersinking.

From the first issue of the 2005 RVator (thanks to Brad Oliver, for the link) and to A VAF Post (again, thanks Brad), I was able to make this cute little HTML table for you.

From the first 2005 issue of the RVator (page 10):

We countersink until the top of the screw is level with the surface, then go 2 clicks deeper on the microstop. The actual outside diameter of the countersink measures .365″ to .375″.

Countersink Widths for Numbered Screws
Screw Size Width [in]
#6 <0.3125
#8 0.365-0.375

So, I broke out my trusty digital calipers, zeroed them out, and dialed in .370″ (right in the middle of 0.365″ and 0.375″).

Just for kicks, I thought I would show you how much bigger that is than a #8 screw. The larger size allows the dimpled skin to nest nicely in the countersink.

WHOSE TOES ARE THOSE!?

SOMEBODY’S TOES KEEP GETTING IN MY PICTURES!

Anyway, I proceeded with countersinking the tank skin attach holes only (the access plate attach holes are smaller.) I am following the directions here exactly, using a #30 piloted countersink (which nestles nicely in the #8 nutplate) as my guide.

I stopped and verified the countersink depth every few holes. Looking good!

About halfway done with the bottom flange.

Here’s a countersink for your viewing pleasure.

The rivet on the right doesn't look flush, but it is. I promise.

Finally, I finished with the bottom flange. (Notice the three sets of four countersinks on the right side of the picture. Those are for the access plates. They use a #40 piloted countersink and are countersunk to a width of 0.312″ (which is less than 0.3125″)).

Ta da!

Oh yeah, now I have to do the other side.

With a noticeable lack of in-process pictures, I finished the top flange also.

Ta da! (Déjà vu?)

1.0 Countersinking-filled hour tonight.

And, I’ve finished the first three paragraphs of the wing section of the manual. Score!

Prev | Next


More work on the Counterbalance Skin

July 20, 2010

Prev | Next

Things have been slow with the airplane recently, right? Well, after a few weeks of letting the garage slowly spiral into a mess of hall closet items (while I’m redoing the floors), saw dust (while I’m redoing the floors), and aluminum dust/shavings (I am working on the plane a little), I decided it was time to get things cleaned up. After an hour of cleaning and organization, I snapped this picture of a nice clean workbench and floor area. Doesn’t really do it justice, but something about a clean workbench makes me happy (notice how I am not showing you a picture of my second workbench!)

(Don't tell the girlfriend I had the vacuum cleaner up on the table going back and forth. It works pretty well, but I accept no blame if you try this at home.)

Okay, finally on to the project. My replacement E-713 came the other day. instead of trying to cleco it on to the already-dimpled skeleton and matchdrill, I am going to trust Vans’ pre-punches and just run a #40 bit through the appropriate holes before deburring and dimpling.

After that was complete, I taped the outside of the skin that I want to protect from primer and scuffed everything up.

Ready to prime...almost. I'm still waiting on a #10 dimple die from Avery. Should be here any day.

Because this part of the exterior side is under the main left elevator skin, I'm going to prime it. Those two smaller holes need to be drilled to #28 before dimpled for #6 screws.

After that, I grabbed my two trim tab horns, and deburred, scuffed, and dimpled the flange holes.

I still need to trim these down per the plans for the electric elevator trim, but I also haven't ordered my electric elevator trim kit yet.

Finally, I disassembled the trim tab to get a little start on that. Here’s the spar, deburred, scuffed, and dimpled on the bottom flange.

The top flange (on the left side of the picture) needs to be countersunk for the upper trim tab skin, because the hinge sits just below the flange, and can't accept a dimpled flange.

2 hours in the shop today, but only 1 hour counts as build time. Hooray clean shop!

Prev | Next


Started Prepping Left Elevator Skeleton

July 2, 2010

Prev | Next

Even though it was my day off, I spent the day trying not to get stung by bees (mowing the forest behind my fence) and meeting the girlfriend for food. After that, I managed to waste an hour or so installing a fan in the garage. Recently, it’s been brutal in the garage, so this morning, while I was walking around Lowe’s, I saw a small ceiling fan for $17. I couldn’t say no. It was harder to install than our nicer fans inside (no little quick-disconnect fan blades or anything), but in the end, it makes me cooler in the garage (double meaning intended).

Huzzah!

Okay, back to work. I think you guys might have seen this picture yesterday, but here it is again…the little riblet I made after drilling.

Looks good. I am proud of this little guy.

Then, I moved over to the spar. These four holes get countersunk because they attach E-705, but the elevator horn has to sit over the rivets but still flush against the forward face of the web.

Beautiful countersinks.

While I had the countersink cage set up, I pulled the trim tab spar out of the elevator and started on it.

Countersink the top flange, dimple the bottom flange.

Aren't these countersinks nice?

After countersinking, both the tab spar and the left elevator main spar were scuffed (more), edge-finished, and then got a trip inside to the sink for a quick rinse before coming back outside to eventually get a coat of primer.

I'm getting close to riveting something, watch out!

Anyway, two very productive hours, and I think I can rivet some reinforcement plates tomorrow if I want. Wuhoo!

Prev | Next


Riveted Right Elevator Skeleton

May 13, 2010

Prev | Next

Well, I’d been waiting for a couple days for an order from Aircraft Spruce to come in. I ordered a whole bunch (~60) #6 screws and nutplates to use to attach the emp tips, and added a couple 1/4″ nutplates to attach to the elevator counterbalance spars so I can add more weight later for fine elevator balancing.

Here’s the deal. When you initially balance the control surfaces (without paint), you can either leave them a little heavy (which some do), or balance them exactly. Given that I might leave my empennage polished, I thought I would go ahead and balance them perfectly for first flight, then rebalance (pronounced “add weight”) after paint. While the forward tooling hole in the counterbalance ribs would work for a straight up bolt and nut, I’d prefer a nutplate. Also, since the two counterbalance ribs are butted against eachother, I’d prefer to drill for the nutplate now, so I can deburr both sides of both surfaces.

(I wonder how people deburr holes drilled through two permanently attached skins. Maybe just the inside and outside of the two skins and not the middle two surfaces?)

Anyway, here’s the order.

screws and nutplates.

Both size #6 screws in their new home.

I'll definitely be able to tell the difference between the two sizes.

Here are the 1/4″ nutplates. I bought one-lug because I thought the second lug might interfere with the An509 screw and nut used to attach the elevator counterweight. I’ll point it out again later.

MK2000-4 nuplates.

Then, some of the smaller MK2000-06 nutplates. I bought these for some of the tight locations on the emp tips.

I forgot to take a picture of the 60-odd 2 leg nutplates.

Okay, now on to real work. Here I am trying to figure out how to get this thing in a place where I can drill it. I don’t have any 1/4″ clecos, so I had to just eyeball it. That was a bad idea.

After one of the #40 holes drilled.

Here's the second hole drilled. You can see I had to enlarge the tooling hole to much bigger than 1/4" because I am lame and didn't have a 1/4" cleco to located the two attach holes. Lame me.

After taking those apart and deburring the holes, I scuffed everything up, leaving only the four rear-most holes on the E-703 End Rib. Again, I use the rivet in the hole into the countersunk steel bar trick.

Ready to flush rivet to form this dimple.

I have a 5/8" flush set, which comes in handy in some places.

Both done.

After cleaning those two ribs, I set them aside to dry before priming. Then, I moved on to the WD-605-R-1 Elevator Horn.

Let's see. AN470AD4-4 rivets. I might have some of those.

A small smiley on the lower left rivet, but according to the diagrams, it is okay.

6 nice rivets. The shop heads are very nice.

See? Told you.

Then I shot the six on the other side of the horn.

I love this new tungsten bucking bar.

6 more down.

Back to the paint booth.

E-703 End Rib and E-704 Counterbalance Rib being primed.

And now, a big pictures shot of the elevator horn on the skeleton.

It's starting to look like an airplane.

Then, I deviated from the plans (like many builders here.) It is easier to attach the E-704 Counterbalance rib to the spar if you don’t rivet it to the E-703 End rib first. I managed to massacre the left head, and the flange on E-704 didn’t sit flat against the skin on the other side.

Whoa. Take it easy, Andrew.

I don't like how the flange isn't flush with the spar web here.

Time to get the drill out.

Drilled first with #40, then #30 through the head only.

Pop the heads off.

Then re-set. This is a little better.

But not perfect. I think it's going to be good enough. I'd rather see them sitting perfectly flat, but the area around the rivet is sitting where it should be. It's just around the edges of the flange that are standing off a little.

Here are the new manufactured heads. Much better.

There we go. What's next?

Okay, now I need to attach the E-704 to E-703. Wait a minute! There is no rivet callout for these.

I see one for E-703 to E-702 and for E-704 to E-702. Where is the E-704 to E-703 callout? Well, I guess I'll just use AN470AD4-4 rivets.

Yikes.

The three upper middle rivets are all horrible. I can't figure out why the gun is jumping around so much.

Anyway, before drilling those out, I wanted to get that nutplate riveted on. Same deal here, though. I couldn’t figure out how to cleco it on for riveting.

Here are the two NAS1097 rivets ready to go.

I ended up shooting both of these at once. (How cool is that?)

NAS1097-4 (I think they are -4s)

I held the bucking bar on the other side and used my finger to hold the nutplate firmly against the web of the rib.

Is this a good method? No. Did it work? Yes.

Anyway, in the above picture, you can see one of the three rivets that I botched. After drilling all three out, I reset 2 successfully, but messed up this one again.

Grrr. It didn't really bend over, but it kind of shifted to one side.

Drilled it out, then did the exact same thing. This is the third time I’ve drilled out a rivet on this hole.

Grrr.

I figured out that during the first try, I had bent the rib web a little, so the rivet was pre-inclined to lean. I took my tungsten bucking bar and my 5/8″ flush set (without a rivet) and got everything flattened out again. Next try, the rivet set well.

Top middle rivet. Much better.

Finally, an upside down picture of the right elevator skeleton.

Tomorrow, I'll get back to work on the skin. Maybe this weekend I'll have an elevator!

2 hours, 26 rivets. 5 drilled out (3 of those was one hole!)

Prev | Next